logologo
Contact

HOMEABOUTSERVICESBLOGSBOOKSSHOPCONTACT

+977 9803661701support@nepatronix.orgLokanthali, Bhaktapur

© 2025 NepaTronix all rigths reserved

Controlling LED Intensity with Variable Resistance Potentiometer(STEAM Education)

  Back To Blogs

To understand the concept of variable resistance using a potentiometer and demonstrate its application in controlling the intensity of light.

Project : 20


Controlling LED Intensity with Variable Resistance (Potentiometer)

If you want to post your project ,research or any document related to Ai,Ml,IoT,Robotics then please email us with your image ,details and your project at blog@nepatronix.org


Project Aim:

To understand the concept of variable resistance using a potentiometer and demonstrate its application in controlling the intensity of light.


Components Used:

1.     Power Supply

2.     Resistors of 100Ω & 220Ω

3.     LED

4.     NPN Transistor

5.     Potentiometer

6.     Connecting Wires

 

Circuit Diagram:

   

Connection Procedure:

Step 1: Placing Potentiometer in the KIT Board, Connect VCC terminal of the Potentiometer to Pin 69, OUTPUT terminal to Pin 67 and GND terminal to the Pin 65

Step 2: Connect the positive terminal of the power supply (pin 62) to one end of Resistor 220Ω (R2, Pin 3).

Step 3: Connect another end of the Resistor 220Ω (R2, Pin 4) to Anode of the LED (Pin 45).

Step 4: Connect Cathode of the LED (Pin 46) to Collector pin of NPN Transistor (Pin 31).

Step 5: Connect Emitter pin of NPN Transistor (Pin 29) to the negative terminal of Power Supply (Pin 59).

Step 6: Connect the Base of the NPN transistor (Pin 30) to one end of the Resistor 100Ω (Pin1).

Step 7: Connect the other end of the resistor 100Ω (Pin 2) to the output terminal of the potentiometer corresponding pin (Pin 68).

Step 8: Connect the VCC terminal of the potentiometer corresponding pin (Pin 70) to the positive terminal of the power supply (Pin 63).

Step 9: Connect the GND terminal of the potentiometer corresponding pin (Pin 66) to the negative terminal of the power supply (pin 60).

Step 10: Adjust the potentiometer's sliding contact to regulate the voltage at the base of the NPN transistor, controlling the LED's brightness.

 

Explanation:

In this project, we'll explore how a potentiometer, a type of variable resistor with three terminals, regulates electric current flow. By adjusting the position of a sliding contact along a uniform resistance, the potentiometer acts as a voltage divider. The input voltage is distributed across the resistor's length, and the output voltage is the difference between the fixed and sliding contacts. Rotating the sliding arm changes the resistance, thereby altering the intensity of light. This allows us to achieve controlled output based on the potentiometer's position.


If you want to post your project ,research or any document related to Ai,Ml,IoT,Robotics then please email us with your image ,details and your project at blog@nepatronix.org




Total likes : 3

Comments







Read More Blogs!

RFID Attendance System(IoT Projects Arduino)

This project IoT Projects Arduino is designed to create an RFID-based attendance system using an ESP32 microcontroller and an MFRC522 RFID reader. The system reads RFID card UIDs, compares them with predefined UIDs to identify users, and displays the results on a LiquidCrystal_I2C LCD screen. If the scanned card UID matches the predefined UID, a "Welcome" message is shown; IoT Projects Arduino otherwise, an "Access Denied" message is displayed. This project demonstrates the use of RFID technology for access control and attendance management.IoT Projects Arduino


2.8k07

Top 20 IoT Projects for Final Year Students

Explore the top 20 IoT projects that will inspire and challenge you in your final year. From smart parking systems and air quality monitors to home automation and industrial safety solutions, these projects cover a wide range of industries and applications. Each project demonstrates how IoT can be used to optimize processes, improve safety, and create smarter systems. With these hands-on projects, you'll gain valuable experience in hardware integration, cloud computing, data analysis, and mobile app development, preparing you for a future in the fast-growing field of IoT.


7.1k010

Top Three Raspberry pi Project

Discover the top three robotics projects that are shaping the future of automation and AI. From autonomous mobile robots that navigate and detect objects to humanoid robots that mimic human movement, these projects combine hardware, software, and artificial intelligence to create cutting-edge systems. The robotic arm with machine vision introduces precision and machine learning into manufacturing and industrial tasks. These projects provide a solid foundation in robotics, sensor integration, machine learning, and control systems, preparing students for careers in robotics and AI.


4.3k06

Diode Action in Forward bias(STEAM Education)

To understand the functioning of a diode under forward-biased conditions


1.8k05